A Novel Small Form-Factor Handheld Optical Coherence Tomography Probe for Oral Soft Tissue Imaging

Author:

Kushwaha Alok K.12,Ji Minqi12,Sethi Sneha3ORCID,Jamieson Lisa3,McLaughlin Robert A.23ORCID,Li Jiawen12ORCID

Affiliation:

1. Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5005, Australia

2. Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia

3. Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

Abstract

Tissue imaging is crucial in oral cancer diagnostics. Imaging techniques such as X-ray imaging, magnetic resonance imaging, optical coherence tomography (OCT) and computed tomography (CT) enable the visualization and analysis of tissues, aiding in the detection and diagnosis of cancers. A significant amount of research has been conducted on designing OCT probes for tissue imaging, but most probes are either heavy, bulky and require external mounting or are lightweight but straight. This study addresses these challenges, resulting in a curved lightweight, low-voltage and compact handheld imaging probe for oral soft tissue examination. To the best of our knowledge, this is the first curved handheld OCT probe with its shape optimized for oral applications. This probe features highly compact all-fiber optics with a diameter of 125 μm and utilizes innovative central deflection magnetic actuation for controlled beam scanning. To ensure vertical stability while scanning oral soft tissues, the fiber was secured through multiple narrow slits at the probe’s distal end. This apparatus was encased in a 3D-printed angular cylinder tube (15 mm outer diameter, 12 mm inner diameter and 160 mm in length, weighing < 20 g). An angle of 115° makes the probe easy to hold and suitable for scanning in space-limited locations. To validate the feasibility of this probe, we conducted assessments on a multi-layered imaging phantom and human tissues, visualizing microstructural features with high contrast.

Funder

National Health and Medical Research Council

National Heart Foundation of Australia

Hospital Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3