Mixing Performance of a Passive Micromixer Based on Split-to-Circulate (STC) Flow Characteristics

Author:

Juraeva Makhsuda1,Kang Dong-Jin1ORCID

Affiliation:

1. School of Mechanical Engineering, Yeungnam University, 280 Daehak-ro, Gyoungsan 38541, Republic of Korea

Abstract

We propose a novel passive micromixer leveraging STC (split-to-circulate) flow characteristics and analyze its mixing performance comprehensively. Three distinct designs incorporating submerged circular walls were explored to achieve STC flow characteristics, facilitating flow along a convex surface and flow impingement on a concave surface. Across a broad Reynolds number range (0.1 to 80), the present micromixer substantially enhances mixing, with a degree of mixing (DOM) consistently exceeding 0.84. Particularly, the mixing enhancement is prominent within the low and intermediate range of Reynolds numbers (0.1<Re<20). This enhancement stems from key flow characteristics of STC: the formation of saddle points around convex walls and flow impingement on concave walls. Compared to other passive micromixers, the DOM of the present micromixer stands out as notably high over a broad range of Reynolds numbers (0.1≤Re≤80).

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3