A New Solution to the Grain Boundary Grooving Problem in Polycrystalline Thin Films When Evaporation and Diffusion Meet in Power Electronic Devices

Author:

Hamieh Tayssir12ORCID,Ibrahim Ali2,Khatir Zoubir2

Affiliation:

1. Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands

2. Systèmes et Applications des Technologies de l’Information et de l’Energie (SATIE), Gustave Eiffel University, 25 Allée des Marronniers, 78000 Versailles, France

Abstract

This paper constituted an extension of two previous studies concerning the mathematical development of the grain boundary grooving in polycrystalline thin films in the cases of evaporation/condensation and diffusion taken separately. The thermal grooving processes are deeply controlled by the various mass transfer mechanisms of evaporation–condensation, surface diffusion, lattice diffusion, and grain boundary diffusion. This study proposed a new original analytical solution to the mathematical problem governing the grain groove profile in the case of simultaneous effects of evaporation–condensation and diffusion in polycrystalline thin films by resolving the corresponding fourth-order partial differential equation ∂y∂t=C∂2y∂x2−B∂4y∂x4 obtained from the approximation ∂y∂x2≪1. The comparison of the new solution to that of diffusion alone proved an important effect of the coupling of evaporation and diffusion on the geometric characteristics of the groove profile. A second analytical solution based on the series development was also proposed. It was proved that changes in the boundary conditions of the grain grooving profile largely affected the different geometric characteristics of the groove profile.

Publisher

MDPI AG

Reference64 articles.

1. Extreme high efficiency enabled by silicon carbide (SiC) power devices;Chen;Mater. Sci. Semicond. Process.,2024

2. A survey of wide bandgap power semiconductor devices;Godignon;IEEE Trans. Power Electron.,2014

3. Achieving zero switching loss in silicon carbide MOSFET;Li;IEEE Trans. Power Electron.,2019

4. Fatigue of graphene;Cui;Nat. Mater.,2020

5. Fatigue, an everlasting materials problem—Still en vogue;Mughrabi;Proc. Eng.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3