A Single-Clamp Inchworm Actuator with Two Piezoelectric Stacks

Author:

Liu Lu1ORCID,Ji Zheyang1ORCID,Zhang Yue1,Chen Huan2,Lou Weimin2,Kong Ming1

Affiliation:

1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

2. Zhejiang Institute of Metrology, Hangzhou 310018, China

Abstract

Inchworm piezoelectric actuators have attracted much attention in the field of precision positioning due to the advantages of a large stroke, high output force, and high resolution. However, traditional inchworm piezoelectric actuators use two sets of clamps and a set of drive structures to achieve stepping motion, which generally requires at least three piezoelectric stacks, resulting in a complex structure and the control system. Several methodologies have been advanced to minimize the utilization of piezoelectric stacks. However, there still exists the issue of excessive volume. Therefore, an inchworm piezoelectric actuator with a single-clamp and single drive structure is proposed in the study, which provides a compact size and smaller volume. The clamping mechanism comprises two sets of clamping feet with opposite displacement, which alternate contact with the guide frame and adjustable plate to ensure that the clamping mechanism always has frictional force and accomplishes the stepping motion. The testing of the actuator’s step distance, output force, and other parameters was conducted utilizing a displacement sensor. Experimental results indicate that the actuator achieved a maximum speed of 174.3 μm/s and an output force of 8.6 N when the frequency and voltage were 19 Hz and 150 V.

Funder

National Natural Science Foundation of China

State Administration for Market Regulation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3