Optimizing an Anaerobic Hybrid Reactor Series for Effective High-Strength Fresh Leachate Treatment and Biogas Generation

Author:

Sutthiprapa Sakulrat12,Towprayoon Sirintornthep12,Chiemchaisri Chart3ORCID,Chaiprasert Pawinee4ORCID,Wangyao Komsilp12ORCID

Affiliation:

1. The Joint Graduate School of Energy and Environment, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand

2. Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok 10140, Thailand

3. Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand

4. Biotechnology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand

Abstract

Treating high-strength fresh leachate is challenging and of great interest due to the inherent variability in its physical and chemical characteristics. This research aims to enhance the efficiency of the anaerobic hybrid reactor (AHR) series in treating high-strength fresh leachate and achieving biogas generation from fresh leachate at ambient temperatures. The AHR series used consists of two serially connected reactors termed the first anaerobic hybrid reactor (AHR-1) and the secondary anaerobic hybrid reactor (AHR-2). AHR-1 treated high-concentration fresh leachate with an organic loading rate (OLR) between 5 and 20 kgCOD/m3·d. AHR-2 treated the effluent from the first tank and removed organic matter from the system. The experiment was conducted for 210 days, showing that an OLR of 10 kgCOD/m3·d resulted in the most suitable COD removal efficiency, ranging from 82 to 91%. The most suitable OLR for biogas production was 15 kgCOD/m3·d. The AHR series proved to be an efficient system for treating high-strength fresh leachate and generating biogas, making it applicable to leachate treatment facilities at waste transfer stations and landfill sites. Treating leachate and utilizing it as a renewable energy source using the AHR series presents a practical and efficient waste management approach. High-strength leachate can be effectively treated with the AHR series; such methods may be integrated into industries treating leachates with high COD values.

Funder

King Mongkut’s University of Technology Thonburi

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3