Dynamical Downscaling of Daily Extreme Temperatures over China Using PRECIS Model

Author:

Guo Junhong1,Jia Hongtao1,Wang Yuexin1,Wang Xiaoxuan1,Li Wei1

Affiliation:

1. MOE Key Laboratory of Resource and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China

Abstract

As global warming intensifies and the frequency of extreme weather events rises, posing a major threat to the world’s economy and sustainable development, accurate forecasting of future extreme events is of great significance to mankind’s response to extreme weather events and to the sustainable development of society. Global Climate Models (GCMs) have limitations in their applicability at regional scales due to their coarse resolution. Utilizing dynamical downscaling methods based on regional climate models (RCMs) is an essential approach to obtaining high-resolution climate simulation information in future. This study represents an attempt to extend the use of the Providing REgional Climates for Impacts Studies (PRECIS) regional climate model by employing the BCC-CSM2-MR model from the Beijing Climate Center to drive it, conducting downscaling experiments over China at a spatial resolution of 0.22° (25 km). The simulation and prediction of daily maximum and minimum temperatures across the China region are conducted, marking a significant effort to expand the usage of PRECIS with data from alternative GCMs. The results indicate that PRECIS performs well in simulating the daily maximum and minimum temperatures over the China region, accurately capturing their spatial distribution and demonstrating notable simulation capabilities for both cold and warm regions. In the annual cycle, the simulation performance of PRECIS is superior to its driving GCM, particularly during cold months (i.e., December and from January to May). Regarding future changes, the daily extreme temperatures in most regions are projected to increase gradually over time. In the early 21st century, the warming magnitude is approximately 1.5 °C, reaching around 3 °C by the end of the century, with even higher warming magnitudes exceeding 4.5 °C under the SSP585 scenario. Northern regions will experience greater warming magnitudes than southern regions, suggesting faster increases in extreme temperatures in higher latitudes. This paper provides forecasts of extreme temperatures in China, which will be useful for studying extreme events and for the government to make decisions in response to extreme events.

Publisher

MDPI AG

Reference35 articles.

1. Extreme temperatures and circulatory mortality in a temperate continental monsoon climate city in Northeast China;Ma;Environ. Sci. Pollut. Res.,2023

2. An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections;Meehl;Bull. Am. Meteorol. Soc.,2000

3. Pachauri, R.K., and Meyer, L.A. (2014). Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

4. Cole, S. (2019). Fourth warmest year in continued warming trend, according to NASA, NOAA News February 2018.

5. Extreme temperatures and time use in China;Garg;J. Econ. Behav. Organ.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3