The Dialectics of Nature–Human Conflicts for Sustainable Water Security

Author:

Ganoulis Jacques1ORCID

Affiliation:

1. UNESCO Chair and Network, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Abstract

How humans use and manage water resources under climate change conditions threatens water security, which means risking the availability of enough good-quality water for everybody and for nature’s flora and fauna. Integrated Water Resources Management is a state-of-the-art water management model. After 20 years in use, the application of this model failed to achieve its primary goal in many countries, i.e., ensuring the good ecological status of rivers, lakes, and aquifers. This paper shows that because the model is more human-centered than nature-oriented or anthropocentric, it generates severe environmental damages called “externalities.” From a historical analysis of the human–nature interplay, three main results were obtained: (1) the nature–human interaction is always in a state of contradictory confrontation, being composed of two opposite human behaviors of conflict and cooperation with nature; (2) this contradiction is assumed as a general ontological principle and epistemic hypothesis, called “dialectical”; and (3) historically, in the balance of power between nature and humans, three clusters are identified: (i) naturalistic, (ii) dualistic, and (iii) anthropocentric. A theory of a novel behaviorist conflict resolution model is suggested to dialectically resolve conflicts between stakeholders and natural laws. This model provides a harmonic symbiosis of humans and nature, removes environmental externalities, and can lead to sustainable water security. Three case studies illustrate the merits of the new dialectical model in real applications.

Publisher

MDPI AG

Reference48 articles.

1. WWDR (2021). Valuing Water, UNESCO. The United Nations World Water Development Report;.

2. Linkages among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services;Gordon;Conserv. Ecol.,1999

3. Bralower, T., and Bice, D. (2024, March 16). Earth in the Future: Distribution of Water on the Earth’s Surface, Open Course, The Pennsylvania State University. Available online: https://www.e-education.psu.edu/earth103/node/701.

4. Adaptation of water resources management under climate change;Zhao;Front. Water,2022

5. Chapter 2 Relations between climate variability in the Mediterranean region and the tropics: ENSO, South Asian and African monsoons, hurricanes and Saharan dust;Alpert;Dev. Earth Environ. Sci.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3