Spatiotemporal Patterns in the Urban Heat Island Effect of Several Contemporary and Historical Chinese “Stove Cities”

Author:

Huang Mengyu1,Zhong Shaobo2,Mei Xin1,He Jin1

Affiliation:

1. Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China

2. Institute of Urban Systems Engineering, Beijing Academy of Science and Technology, Beijing 100035, China

Abstract

Various cities in China have been identified as “stove cities” either in contemporary or historical times, exposing residents to extremely high temperatures. Existing studies on the heat island effect in stove cities are not representative nationwide. The outdated nature of these studies also significantly diminishes the relevance of their findings. Thus, reassessing the urban heat island (UHI) effect of stove cities is necessary in the context of global climate change and urbanization. This study focuses on seven symbolic and geographically distributed stove cities in China, including Nanjing, Chongqing, Wuhan, Fuzhou, Beijing, Xi’an, and Turpan. Using land surface temperature (LST) data, this study investigates the summer heat island effect from 2013 to 2023 and analyzes changes in the spatial distribution of the heat island effect. This paper utilizes impervious surface data and urban clustering algorithms to define urban and suburban areas. It then examines the evolution and spatial distribution of surface urban heat island intensity (SUHII) over time. Incorporating urbanization variables like population density and urban area, the study analyzes the main factors affecting the heat island effect from 2013 to 2018. We find that all cities continuously expand, with the annual average heat island effect intensifying over the years. With the exception of Beijing, the summer heat island or cool island effects in the remaining six cities show an overall intensification trend. From 2013 to 2018, SUHII has been primarily related to urban expansion and planning layout, with minimal impact from factors such as population density.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3