Inter-Annual Climate Variability Impact on Oil Palm Mapping

Author:

Troya Fernando,Bernardino Paulo N.,Somers BenORCID

Abstract

The contribution of oil palm plantations to the economic growth of tropical developing countries makes it essential to monitor their expansion into the tropical forest; consequently, most studies focus on improving mapping accuracy while using satellite imagery. However, accuracy can be hampered by atmospheric phenomena that can drastically change climatic conditions in tropical regions, affecting the spectral properties of the vegetation. In this sense, we studied the accuracy of palm plantation mapping by using features from different regions of the electromagnetic spectrum and a data fusion approach, and then compared the changes in accuracy over the years 2016, 2017, and 2018 (two of them with reported climatic anomalies). Optical-based maps obtained higher accuracy than thermal- and microwave-based maps, but they were the most affected by inter-annual climate variability (error margin between 5 and 10%), while thermal-based maps were the least affected (error margin between 8 and 9%). Data fusion combinations improved accuracy and reduced dissimilarities between years (e.g., phenology-based map accuracy changed by up to 20.8%, while phenology fused with microwave features changed by up to 6.8%). We conclude that inter-annual climate variability on land-cover mapping should be considered, especially if the outputs will be used as input in future studies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3