Mitigation of Systematic Noise in F16 SSMIS LAS Channels Observations for Tropical Cyclone Applications

Author:

Dong Huijie,Zou Xiaolei

Abstract

The Special Sensor Microwave Imager Sounder (SSMIS) onboard the Defense Meteorological Satellite Program (DMSP) F16, launched on 18 October 2003, was the first conical-scanning radiometer to combine the Special Sensor Microwave/Imagers (SSM/I), Special Sensor Microwave/Temperature Sounder (SSM/T), and the Special Sensor Microwave/Water Vapor Sounder (SSM/T2). Nearly 20 years of F16 SSMIS data are available to the general public, providing many opportunities to study the atmosphere at both the synoptic and decadal scales. However, data noise from complicated structures has occurred in the brightness temperature (TB) observations of lower atmospheric sounding (LAS) channels since 25 April 2013. We used a two-dimensional Fast Fourier Transform to analyze the characteristic features of data noise in cross-track and along-track directions. We found that the data noise is around 1–2 K and occurs at certain cross-track wavelengths (Δλ)noise. A latitudinal variation was found for (Δλ)noise. Due to noise interference, TB observations reflecting rain, clouds, tropical cyclone warm core, temperature, and water vapor distributions are not readily distinguishable, especially in channels above the middle troposphere (channels 4–7 and 24), whose dynamic TB range is smaller than low tropospheric channels 1–3. Examples are provided to show the impact of the proposed noise mitigation for conical-scanning TB observations to capture 3D structures of hurricanes directly. Once the noise in F16 SSMIS LAS channels from 25 April 2013to the present is eliminated, we may investigate the decadal change of many features of tropical cyclones derivable from these TB observations.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3