Improving the SSH Retrieval Precision of Spaceborne GNSS-R Based on a New Grid Search Multihidden Layer Neural Network Feature Optimization Method

Author:

Wang Qiang,Zheng Wei,Wu Fan,Zhu HuizhongORCID,Xu Aigong,Shen Yifan,Zhao Yelong

Abstract

The altimetry precision of conventional spaceborne Global Navigation Satellite Systems Reflectometry (GNSS-R) is limited, and the error models are complicated. To compensate for the shortcomings of conventional methods, we present a new grid search multihidden layer neural network feature optimization method (GSMHLFO) for sea surface height (SSH) retrieval. Firstly, the GSMHLFO is constructed by combining the multihidden layer neural network, feature engineering, and a grid search algorithm. Moreover, the retrieval performance of the GSMHLFO and its sensitivity to various features are analyzed. By analyzing 14 feature sets with different information details, we concluded that the elevation, signal-to-noise ratio (SNR), atmospheric delay, and ocean wind speed can provide essential contributions to the SSH retrieval based on GSMHLFO. Secondly, the Technical University of Denmark 18 mean sea surface (DTU18 MSS), which is corrected by the TPXO8 global tide model, was used to verify the GSMHLFO. The number of hidden layers and neurons was optimized using the grid search algorithm. The experimental results show that the proposed GSMHLFO with four hidden layers and 200 neurons per layer has a better retrieval performance. Compared with DTU18, the mean absolute difference (MAD), the root mean square error (RMSE), and the Pearson correlation coefficient (PCC) equal 4.23 m, 5.94 m, and 0.98, respectively. The retrieval precision obtained is significantly improved compared to that reported in the literature for the TDS-1 SSH retrieval. Finally, the retrieval performance of the GSMHLFO and the traditional HALF single-point retracking method were compared. The precision of GSMHLFO is higher than that of traditional retracking method according to MAD, RMSE, and PCC, which are increased by 32.86, 25.00, and 8.99%. The GSMHLFO will provide innovative theoretical and methodological support for the high-precision SSH retrieval of GNSS-R altimetry satellites in the future.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Frontier Science and Technology Innovation Project and the Innovation Workstation Project of Science and Technology Commission of the Central Military Commission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3