PolSAR Scene Classification via Low-Rank Constrained Multimodal Tensor Representation

Author:

Ren Bo,Chen Mengqian,Hou BiaoORCID,Hong DanfengORCID,Ma Shibin,Chanussot Jocelyn,Jiao Licheng

Abstract

Polarimetric synthetic aperture radar (PolSAR) data can be acquired at all times and are not impacted by weather conditions. They can efficiently capture geometrical and geographical structures on the ground. However, due to the complexity of the data and the difficulty of data availability, PolSAR image scene classification remains a challenging task. To this end, in this paper, a low-rank constrained multimodal tensor representation method (LR-MTR) is proposed to integrate PolSAR data in multimodal representations. To preserve the multimodal polarimetric information simultaneously, the target decompositions in a scene from multiple spaces (e.g., Freeman, H/A/α, Pauli, etc.) are exploited to provide multiple pseudo-color images. Furthermore, a representation tensor is constructed via the representation matrices and constrained by the low-rank norm to keep the cross-information from multiple spaces. A projection matrix is also calculated by minimizing the differences between the whole cascaded data set and the features in the corresponding space. It also reduces the redundancy of those multiple spaces and solves the out-of-sample problem in the large-scale data set. To support the experiments, two new PolSAR image data sets are built via ALOS-2 full polarization data, covering the areas of Shanghai, China, and Tokyo, Japan. Compared with state-of-the-art (SOTA) dimension reduction algorithms, the proposed method achieves the best quantitative performance and demonstrates superiority in fusing multimodal PolSAR features for image scene classification.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

the Foundation for Innovative Research Groups of the National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3