CAISOV: Collinear Affine Invariance and Scale-Orientation Voting for Reliable Feature Matching

Author:

Luo Haihan,Liu Kai,Jiang SanORCID,Li Qingquan,Wang Lizhe,Jiang WanshouORCID

Abstract

Reliable feature matching plays an important role in the fields of computer vision and photogrammetry. Due to the complex transformation model caused by photometric and geometric deformations, and the limited discriminative power of local feature descriptors, initial matches with high outlier ratios cannot be addressed very well. This study proposes a reliable outlier-removal algorithm by combining two affine-invariant geometric constraints. First, a very simple geometric constraint, namely, CAI (collinear affine invariance) has been implemented, which is based on the observation that the collinear property of any two points is invariant under affine transformation. Second, after the first-step outlier removal based on the CAI constraint, the SOV (scale-orientation voting) scheme was then adopted to remove remaining outliers and recover the lost inliers, in which the peaks of both scale and orientation voting define the parameters of the geometric transformation model. Finally, match expansion was executed using the Delaunay triangulation of refined matches. By using close-range (rigid and non-rigid images) and UAV (unmanned aerial vehicle) datasets, comprehensive comparison and analysis are conducted in this study. The results demonstrate that the proposed outlier-removal algorithm achieves the best overall performance when compared with RANSAC-like and local geometric constraint-based methods, and it can also be applied to achieve reliable outlier removal in the workflow of SfM-based UAV image orientation.

Funder

National Natural Science Foundation of China

Open Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital 496 Economy

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3