Characteristics of Freeze–Thaw Cycles in an Endorheic Basin on the Qinghai-Tibet Plateau Based on SBAS-InSAR Technology

Author:

Zhou HuayunORCID,Zhao LinORCID,Wang Lingxiao,Xing Zanpin,Zou DefuORCID,Hu Guojie,Xie ChangweiORCID,Pang Qiangqiang,Liu GuangyueORCID,Du ErjiORCID,Liu ShiboORCID,Qiao Yongping,Zhao Jianting,Li Zhibin,Liu Yadong

Abstract

The freeze–thaw (F-T) cycle of the active layer (AL) causes the “frost heave and thaw settlement” deformation of the terrain surface. Accurately identifying its amplitude and time characteristics is important for climate, hydrology, and ecology research in permafrost regions. We used Sentinel-1 SAR data and small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) technology to obtain the characteristics of F-T cycles in the Zonag Lake-Yanhu Lake permafrost-affected endorheic basin on the Qinghai-Tibet Plateau from 2017 to 2019. The results show that the seasonal deformation amplitude (SDA) in the study area mainly ranges from 0 to 60 mm, with an average value of 19 mm. The date of maximum frost heave (MFH) occurred between November 27th and March 21st of the following year, averaged in date of the year (DOY) 37. The maximum thaw settlement (MTS) occurred between July 25th and September 21st, averaged in DOY 225. The thawing duration is the thawing process lasting about 193 days. The spatial distribution differences in SDA, the date of MFH, and the date of MTS are relatively significant, but there is no apparent spatial difference in thawing duration. Although the SDA in the study area is mainly affected by the thermal state of permafrost, it still has the most apparent relationship with vegetation cover, the soil water content in AL, and active layer thickness. SDA has an apparent negative and positive correlation with the date of MFH and the date of MTS. In addition, due to the influence of soil texture and seasonal rivers, the seasonal deformation characteristics of the alluvial-diluvial area are different from those of the surrounding areas. This study provides a method for analyzing the F-T cycle of the AL using multi-temporal InSAR technology.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3