UAV Video-Based Approach to Identify Damaged Trees in Windthrow Areas

Author:

Furukawa Flavio,Morimoto JunkoORCID,Yoshimura Nobuhiko,Koi Takashi,Shibata HideakiORCID,Kaneko Masami

Abstract

Disturbances in forest ecosystems are expected to increase by the end of the twenty-first century. An understanding of these disturbed areas is critical to defining management measures to improve forest resilience. While some studies emphasize the importance of quick salvage logging, others emphasize the importance of the deadwood for biodiversity. Unmanned aerial vehicle (UAV) remote sensing is playing an important role to acquire information in these areas through the structure-from-motion (SfM) photogrammetry process. However, the technique faces challenges due to the fundamental principle of SfM photogrammetry as a passive optical method. In this study, we investigated a UAV video-based technology called full motion video (FMV) to identify fallen and snapped trees in a windthrow area. We compared the performance of FMV and an orthomosaic, created by the SfM photogrammetry process, to manually identify fallen and snapped trees, using a ground survey as a reference. The results showed that FMV was able to identify both types of damaged trees due to the ability of video to deliver better context awareness compared to the orthomosaic, although providing lower position accuracy. In addition to its processing being simpler, FMV technology showed great potential to support the interpretation of conventional UAV remote sensing analysis and ground surveys, providing forest managers with fast and reliable information about damaged trees in windthrow areas.

Funder

Japan Society for the Promotion of Science

TOUGOU

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3