Unmanned Aircraft System (UAS) Structure-From-Motion (SfM) for Monitoring the Changed Flow Paths and Wetness in Minerotrophic Peatland Restoration

Author:

Ikkala LauriORCID,Ronkanen Anna-Kaisa,Ilmonen Jari,Similä Maarit,Rehell Sakari,Kumpula Timo,Päkkilä Lassi,Klöve Björn,Marttila Hannu

Abstract

Peatland restoration aims to achieve pristine water pathway conditions to recover dispersed wetness, water quality, biodiversity and carbon sequestration. Restoration monitoring needs new methods for understanding the spatial effects of restoration in peatlands. We introduce an approach using high-resolution data produced with an unmanned aircraft system (UAS) and supported by the available light detection and ranging (LiDAR) data to reveal the hydrological impacts of elevation changes in peatlands due to restoration. The impacts were assessed by analyzing flow accumulation and the SAGA Wetness Index (SWI). UAS campaigns were implemented at two boreal minerotrophic peatland sites in degraded and restored states. Simultaneously, the control campaigns mapped pristine sites to reveal the method sensitivity of external factors. The results revealed that the data accuracy is sufficient for describing the primary elevation changes caused by excavation. The cell-wise root mean square error in elevation was on average 48 mm when two pristine UAS campaigns were compared with each other, and 98 mm when each UAS campaign was compared with the LiDAR data. Furthermore, spatial patterns of more subtle peat swelling and subsidence were found. The restorations were assessed as successful, as dispersing the flows increased the mean wetness by 2.9–6.9%, while the absolute changes at the pristine sites were 0.4–2.4%. The wetness also became more evenly distributed as the standard deviation decreased by 13–15% (a 3.1–3.6% change for pristine). The total length of the main flow routes increased by 25–37% (a 3.1–8.1% change for pristine), representing the increased dispersion and convolution of flow. The validity of the method was supported by the field-determined soil water content (SWC), which showed a statistically significant correlation (R2 = 0.26–0.42) for the restoration sites but not for the control sites, possibly due to their upslope catchment areas being too small. Despite the uncertainties related to the heterogenic soil properties and complex groundwater interactions, we conclude the method to have potential for estimating changed flow paths and wetness following peatland restoration.

Funder

Hydro-RDI-Network

Strategic Research Council

Academy of Finland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference111 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3