Annual Wetland Mapping in Metropolis by Temporal Sample Migration and Random Forest Classification with Time Series Landsat Data and Google Earth Engine

Author:

Wang Ming,Mao DehuaORCID,Wang Yeqiao,Song Kaishan,Yan Hengqi,Jia MingmingORCID,Wang ZongmingORCID

Abstract

Wetlands provide various ecosystem services to urban areas, which are crucial for sustainable urban management. With intensified urbanization, there has been marked loss of urban natural wetland, degradation, and related urban disasters in the past several decades. Rapid and accurate mapping of urban wetland extent and change is thus critical for improving urban planning toward sustainability. Here, we have developed a rapid method for continuous mapping of urban wetlands (MUW) by combining automatic sample migration and the random forest algorithm (SM&RF), the so-called MUW_SM&RF. Using time series Landsat images, annual training samples were generated through spectral angular distance (SAD) and time series analysis. Combined with the RF algorithm, annual wetland maps in urban areas were derived. Employing the Google Earth Engine platform (GEE), the MUW_SM&RF was evaluated in four metropolitan areas in different geographical and climatic regions of China from 1990 to 2020, including Tianjin, Hangzhou, Guangzhou, and Wuhan. In all four study areas, the generated annual wetland maps had an overall accuracy of over 87% and a Kappa coefficient above 0.815. Compared with previously published datasets, the urban wetland areas derived using the MUW_SM&RF approach achieved improved accuracy and thus demonstrated its robustness for rapid mapping of urban wetlands. Urban wetlands in all four cities had variable distribution patterns and showed significantly decreased trends in the past three decades. The annual urban wetland data product generated by the MUW_SM&RF can provide invaluable information for sustainable urban planning and management, so as for assessment related to the United Nation’s sustainable development goals.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3