Accurate Recognition of Building Rooftops and Assessment of Long-Term Carbon Emission Reduction from Rooftop Solar Photovoltaic Systems Fusing GF-2 and Multi-Source Data

Author:

Lin ShaofuORCID,Zhang Chang,Ding Lei,Zhang Jing,Liu XiliangORCID,Chen Guihong,Wang ShaohuaORCID,Chai JinchuanORCID

Abstract

Rooftop solar photovoltaic (PV) retrofitting can greatly reduce the emissions of greenhouse gases, thus contributing to carbon neutrality. Effective assessment of carbon emission reduction has become an urgent challenge for the government and for business enterprises. In this study, we propose a method to assess accurately the potential reduction of long-term carbon emission by installing solar PV on rooftops. This is achieved using the joint action of GF-2 satellite images, Point of Interest (POI) data, and meteorological data. Firstly, we introduce a building extraction method that extends the DeepLabv3+ by fusing the contextual information of building rooftops in GF-2 images through multi-sensory fields. Secondly, a ridgeline detection algorithm for rooftop classification is proposed, based on the Hough transform and Canny edge detection. POI semantic information is used to calculate the usable area under different subsidy policies. Finally, a multilayer perceptron (MLP) is constructed for long-term PV electricity generation series with regional meteorological data, and carbon emission reduction is estimated for three scenarios: the best, the general, and the worst. Experiments were conducted with GF-2 satellite images collected in Daxing District, Beijing, China in 2021. Final results showed that: (1) The building rooftop recognition method achieved overall accuracy of 95.56%; (2) The best, the general and the worst amount of annual carbon emission reductions in the study area were 7,705,100 tons, 6,031,400 tons, and 632,300 tons, respectively; (3) Multi-source data, such as POIs and climate factors play an indispensable role for long-term estimation of carbon emission reduction. The method and conclusions provide a feasible approach for quantitative assessment of carbon reduction and policy evaluation.

Funder

Beijing University of Technology

Scientific research and development fund of China Academy of Railway Sciences Corperation Limited

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3