Downscaling Satellite Soil Moisture Using a Modular Spatial Inference Framework

Author:

Llamas Ricardo M.ORCID,Valera Leobardo,Olaya PaulaORCID,Taufer Michela,Vargas RodrigoORCID

Abstract

Soil moisture is an important parameter that regulates multiple ecosystem processes and provides important information for environmental management and policy decision-making. Spaceborne sensors provide soil moisture information over large areas, but information is commonly available at coarse resolution with spatial and temporal gaps. Here, we present a modular spatial inference framework to downscale satellite-derived soil moisture using terrain parameters and test the performance of two modeling methods (Kernel-Weighted K-Nearest Neighbor <KKNN> and Random Forest <RF>). We generate monthly and weekly gap-free spatial predictions on soil moisture at 1 km using data from the European Space Agency Climate Change Initiative (ESA-CCI; version 6.1) over two regions in the conterminous United States. RF was the method that performed better in cross-validation when comparing with the reference ESA-CCI data, but KKNN showed a slightly higher agreement with ground-truth information as part of independent validation. We postulate that more heterogeneous landscapes (i.e., high topographic variation) may be more challenging for downscaling and predicting soil moisture; therefore, moisture networks should increase monitoring efforts across these complex landscapes. Future opportunities for development of modular cyberinfrastructure tools for downscaling satellite-derived soil moisture are discussed.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial Downscaling of Satellite-Based Soil Moisture Products Using Machine Learning Techniques: A Review;Remote Sensing;2024-06-07

2. End-to-end Integration of Scientific Workflows on Distributed Cyberinfrastructures: Challenges and Lessons Learned with an Earth Science Application;Proceedings of the IEEE/ACM 16th International Conference on Utility and Cloud Computing;2023-12-04

3. Microwave Remote Sensing of Soil Moisture;Remote Sensing;2023-08-29

4. GEOtiled: A Scalable Workflow for Generating Large Datasets of High-Resolution Terrain Parameters;Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing;2023-08-07

5. Enabling Scalability in the Cloud for Scientific Workflows: An Earth Science Use Case;2023 IEEE 16th International Conference on Cloud Computing (CLOUD);2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3