Abstract
Produced by magnetic material dispersed in a viscous environment for the purpose of collecting and converting energy, magnetic rheological compounds greatly strengthen the development of skin-attachable and wearable electrical equipment. Given that magnetic nanomaterial anisotropy has a substantial influence on the interface polarizing of polyvinylidene fluoride (PVDF), it is critical to explore the function of magnetic polymer compounds in the triboelectric layer of triboelectric nanogenerator (TENG) output power. In this study, ferromagnetic cobalt ferrite, CoFe2O4 (CFO), nanoparticles, and PVDF were employed to create a triboelectric composite membrane to improve TENG energy output. The content of β phase in PVDF increased significantly from 51.2% of pure PVDF membrane to 77.7% of 5 wt% CFO nanoparticles in the PVDF matrix, which further increase the dielectric constant and negative charge of the membrane. As a consequence, the energy output of CFO/PVDF-5 TENG increased significantly with a voltage of 17.2 V, a current of 2.27 μA, and a power density of 90.3 mW/m2, which is 2.4 times the performance of pure PVDF TENG. Finally, the proposal for TENG hopes that its extraordinary stability and durability will provide additional views on hydrodynamic power generation in the future.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献