Abstract
Due to rise in infrastructure development and demand for seawater and sea sand concrete, fiber-reinforced polymer (FRP) rebars are widely used in the construction industry. Flexural strength is an important component of reinforced concrete structural design. Therefore, this research focuses on estimating the flexural capacity of FRP-reinforced concrete beams using novel artificial intelligence (AI) decision tree (DT) and gradient boosting tree (GBT) approaches. For this purpose, six input parameters, namely the area of bottom flexural reinforcement, depth of the beam, width of the beam, concrete compressive strength, the elastic modulus of FRP rebar, and the tensile strength of rebar at failure, are considered to predict the moment bearing capacity of the beam under bending loads. The models were trained using 60% of the database and were validated first-hand on the remaining 40% database employing the correlation coefficient (R), error indices namely, mean absolute error, root mean square error (MAE, RMSE) and slope of the regression line between observed and predicted results. The developed models were further validated using sensitivity and parametric analysis. Both models revealed comparable performance; however, based on the comparison of the slope of the validation data (0.83 for GBT model against 0.75 for the DT model) and higher R for the validation phase in case of the GBT model in comparison to the DT, the GBT model can be considered more accurate and robust. The sensitivity analysis yielded depth of the beam as the most influential parameter in contributing flexural strength of the beam, followed by the area of flexural reinforcement. The developed GBT model surpasses the existing gene expression programming (GEP) model in terms of accuracy; however, the current American Concrete Institute (ACI) model equations are more reliable than AI models in predicting the flexural strength of FRP-reinforced concrete beams.
Subject
Polymers and Plastics,General Chemistry
Reference88 articles.
1. Concrete material science: Past, present, and future innovations
2. Cement-Based Materials for Nuclear Waste Storage;Bart,2012
3. Corrosion of Steel in Concrete: Understanding, Investigation and Repair;Broomfield,2003
4. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring
5. Corrosion in Reinforced Concrete Structures;Böhni,2005
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献