Ensemble Tree-Based Approach towards Flexural Strength Prediction of FRP Reinforced Concrete Beams

Author:

Amin Muhammad NasirORCID,Iqbal MudassirORCID,Khan KaffayatullahORCID,Qadir Muhammad Ghulam,Shalabi Faisal I.ORCID,Jamal ArshadORCID

Abstract

Due to rise in infrastructure development and demand for seawater and sea sand concrete, fiber-reinforced polymer (FRP) rebars are widely used in the construction industry. Flexural strength is an important component of reinforced concrete structural design. Therefore, this research focuses on estimating the flexural capacity of FRP-reinforced concrete beams using novel artificial intelligence (AI) decision tree (DT) and gradient boosting tree (GBT) approaches. For this purpose, six input parameters, namely the area of bottom flexural reinforcement, depth of the beam, width of the beam, concrete compressive strength, the elastic modulus of FRP rebar, and the tensile strength of rebar at failure, are considered to predict the moment bearing capacity of the beam under bending loads. The models were trained using 60% of the database and were validated first-hand on the remaining 40% database employing the correlation coefficient (R), error indices namely, mean absolute error, root mean square error (MAE, RMSE) and slope of the regression line between observed and predicted results. The developed models were further validated using sensitivity and parametric analysis. Both models revealed comparable performance; however, based on the comparison of the slope of the validation data (0.83 for GBT model against 0.75 for the DT model) and higher R for the validation phase in case of the GBT model in comparison to the DT, the GBT model can be considered more accurate and robust. The sensitivity analysis yielded depth of the beam as the most influential parameter in contributing flexural strength of the beam, followed by the area of flexural reinforcement. The developed GBT model surpasses the existing gene expression programming (GEP) model in terms of accuracy; however, the current American Concrete Institute (ACI) model equations are more reliable than AI models in predicting the flexural strength of FRP-reinforced concrete beams.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference88 articles.

1. Concrete material science: Past, present, and future innovations

2. Cement-Based Materials for Nuclear Waste Storage;Bart,2012

3. Corrosion of Steel in Concrete: Understanding, Investigation and Repair;Broomfield,2003

4. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring

5. Corrosion in Reinforced Concrete Structures;Böhni,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3