Polyurea Aerogels: Synthesis, Material Properties, and Applications

Author:

Leventis Nicholas

Abstract

Polyurea is an isocyanate derivative, and comprises the basis for a well-established class of polymeric aerogels. Polyurea aerogels are prepared either via reaction of multifunctional isocyanates with multifunctional amines, via reaction of multifunctional isocyanates and water, or via reaction of multifunctional isocyanates and mineral acids. The first method is the established one for the synthesis of polyurea, the third is a relatively new method that yields polyurea doped with metal oxides in one step, while the reaction of isocyanates with water has become the most popular route to polyurea aerogels. The intense interest in polyurea aerogels can be attributed in part to the low cost of the starting materials—especially via the water method—in part to the extremely broad array of nanostructural morphologies that allow study of the nanostructure of gels as a function of synthetic conditions, and in part to the broad array of functional properties that can be achieved even within a single chemical composition by simply adjusting the synthetic parameters. In addition, polyurea aerogels based on aromatic isocyanates are typically carbonizable materials, making them highly competitive alternatives to phenolic aerogels as precursors of carbon aerogels. Several types of polyurea aerogels are already at different stages of commercialization. This article is a comprehensive review of all polyurea-based aerogels, including polyurea-crosslinked oxide and biopolymer aerogels, from a fundamental nanostructure–material properties perspective, as well as from an application perspective in thermal and acoustic insulation, oil adsorption, ballistic protection, and environmental cleanup.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3