Mucilage of Coccinia grandis as an Efficient Natural Polymer-Based Pharmaceutical Excipient

Author:

Ilango Kumbakonam BalachandranORCID,Gowthaman Senguttuvan,Seramaan Kumbakonam IlangoORCID,Chidambaram KumarappanORCID,Bayan Mohammad F.ORCID,Rahamathulla MohamedORCID,Balakumar Chandrasekaran

Abstract

Natural eco-friendly materials are recently employed in products to replace synthetic materials due to their superior benefits in preserving the environment. The herb Coccinia grandis is widely distributed in continents like Asia and Africa and used traditionally to treat fever, leprosy, asthma, jaundice, and bronchitis. Mucilage of Coccinia grandis was accordingly extracted, isolated by a maceration technique, and precipitated. The mucilage was evaluated for its physicochemical, binding, and disintegrant properties in tablets using paracetamol as a model drug. The crucial physicochemical properties such as flow properties, solubility, swelling index, loss on drying, viscosity, pH, microbial load, cytotoxicity was evaluated and the compatibility was analyzed using sophisticated instrumental methods (TGA, DTA, DSC, and FTIR). The binding properties of the mucilage was used at three different concentrations and compared with starch and PVP as examples of standard binders. The disintegrant properties of mucilage were used at two different concentrations and compared with standard disintegrants MCCP, SSG, and CCS. The tablets were punched and evaluated for their hardness, friability, assay, disintegration time, in vitro dissolution profiles. In vitro cytotoxicity studies of the mucilage were performed in a human embryonic kidney (HEK) cell line. The outcome of the study indicated that the mucilage had good performance compared with starch and PVP. Further, the mucilage acts as a better disintegrant than MCCP, SSG and CCS for paracetamol tablets. Use of a concentration of 3% or less demonstrated the ability of the mucilage to act as a super disintegrating agent and showed faster disintegration and dissolution, which makes it as an attractive, promising disintegrant in formulating solid dosage forms to improve the therapeutic efficacy and patient compliance. Moreover, the in vitro cytotoxicity evaluation results demonstrated that the mucilage is non-cytotoxic to human cells and is safe.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3