Mechanical and Thermal Properties of Geopolymer Foams (GFs) Doped with By-Products of the Secondary Aluminum Industry

Author:

Ercoli RobertoORCID,Laskowska DorotaORCID,Nguyen Van VuORCID,Le Van SuORCID,Louda PetrORCID,Łoś Piotr,Ciemnicka JustynaORCID,Prałat KarolORCID,Renzulli Alberto,Paris Eleonora,Basilici Matteo,Rapiejko CezaryORCID,Buczkowska Katarzyna EwaORCID

Abstract

The article deals with the investigation of geopolymer foams (GFs) synthesized using by-products coming from the (i) screening-, (iv) pyrolysis-, (iii) dust abatement- and (iv) fusion-processes of the secondary aluminum industry. Based on principles of the circular economy to produce new technological materials, the experimental study involves industrial by-products management through the recovery, chemical neutralization, and incorporation of these relatively hazardous waste into the GFs. The geopolymeric matrix, consisting of metakaolin (MK) and silica sand (SA) with a 1:1 wt.% ratio, and chopped carbon fibers (CFs, 1 wt.% MK), was doped with the addition of different aluminum-rich industrial by-products with a percentage from 1 to 10 wt.% MK. The gas (mainly hydrogen) produced during the chemical neutralization of the by-products represents the foaming agents trapped in the geopolymeric structure. Several experimental tests were carried out to characterize the mechanical (flexural, compressive, and Charpy impact strengths) and thermal properties (thermal conductivity, and diffusivity, and specific heat) of the GFs. Results identify GFs with good mechanical and thermal insulation properties, encouraging future researchers to find the best combination (for types and proportions) of the different by-products of the secondary aluminum industry to produce lightweight geopolymer foams. The reuse of these industrial by-products, which according to European Regulations cannot be disposed of in the landfill, also brings together environmental sustainability and safe management of hazardous material in workplaces addressed to the development of new materials.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3