Abstract
A polymer ceramic precursor material—polycarbosilane (PCS)—was used as a synergistic additive with magnesium hydroxide (MH) in flame-retardant ethylene–vinyl acetate copolymer (EVA) composites via the melt-blending method. The flame-retardant properties of EVA/MH/PCS were evaluated by the limiting oxygen index (LOI) and a cone calorimeter (CONE). The results revealed a dramatic synergistic effect between PCS and MH, showing a 114% increase in the LOI value and a 46% decrease in the peak heat release rate (pHRR) with the addition of 2 wt.% PCS to the EVA/MH composite. Further study of the residual char by scanning electron microscopy (SEM) proved that a cohesive and compact char formed due to the ceramization of PCS and close packing of spherical magnesium oxide particles. Thermogravimetric analysis coupled with Fourier-transform infrared spectrometry (TG–FTIR) and pyrolysis–gas chromatography coupled with mass spectrometry (Py–GC/MS) were applied to investigate the flame-retardant mechanism of EVA/MH/PCS. The synergistic effect between PCS and MH exerted an impact on the thermal degradation products of EVA/MH/PCS, and acetic products were inhibited in the gas phase.
Funder
the Open Project Program of Engineering Laboratory of Non halogen Flame Retardants for Polymers, Beijing Technology and Business University, China
Subject
Polymers and Plastics,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献