The Synergetic Impact of Anionic, Cationic, and Neutral Polymers on VES Rheology at High-Temperature Environment

Author:

Othman Amro,AlSulaimani Mohammed,Aljawad Murtada SalehORCID,Sangaru Shiv ShankarORCID,Kamal Muhammad ShahzadORCID,Mahmoud MohamedORCID

Abstract

Hydraulic fracturing operations target enhancing the productivity of tight formations through viscous fluid injection to break down the formation and transport proppant. Crosslinked polymers are usually used for desired viscoelasticity of the fracturing fluid; however, viscoelastic surfactants (VES) became a possible replacement due to their less damaging impact. To design a fracturing fluid with exceptional rheological and thermal stability, we investigated mixing zwitterionic VES with carboxymethyl cellulose (CMC), hydroxyethylcellulose (HEC), or a poly diallyl dimethylammonium chloride (DADMAC) polymers. As a base fluid, calcium chloride (CaCl2) solution was prepared with either distilled water or seawater before adding a polymer and the VES. A Chandler high-pressure, high-temperature (HPHT) viscometer was used to conduct the viscosity measurements at a shear rate of 100 1/s. It has been found that adding 1% CMC polymer to 9% (v/v) VES increases the viscosity more compared to 10% (v/v) VES at reservoir temperatures of 143.3 °C. On the other hand, adding only 1.0% of HEC to 9% (v/v) VES doubled the viscosity and proved more effective than adding CMC. HEC, nevertheless, reduced the system stability at high temperatures (i.e., 148.9 °C). Adding DADMAC polymer (DP) to VES increased the system viscosity and maintained high stability at high temperatures despite being exposed to saltwater. CaCl2 concentration was also shown to affect rheology at different temperatures. The improved viscosity through the newly designed polymer can reduce chemical costs (i.e., reducing VES load), making it more efficient in hydraulic fracturing operations.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3