Abstract
As part of the work, innovative polymer composites dedicated to 3D printing applications were developed. For this purpose, the influence of modified fillers, such as silica modified with alumina, bentonite modified with quaternary ammonium salt, and hybrid filler lignin/silicon dioxide, on the functional properties of composites based on glycol-modified poly(ethylene terephthalate) (PET-G) was investigated. In the first part of the work, using the proprietary technological line, filaments from unfilled polymer and its composites were obtained, which contained modified fillers in an amount from 1.5% to 3.0% by weight. The fittings for the testing of functional properties were obtained using the 3D printing technique in the Melted and Extruded Manufacturing (MEM) technology and the injection molding technique. In a later part of the work, rheological properties such as mass melt flow rate (MFR) and viscosity, and mechanical properties such as Rockwell hardness, Charpy impact strength, and static tensile strength with Young’s modulus were presented. The structure of the obtained composites was also described and determined using scanning electron microscopy with an attachment for the microanalysis of chemical composition (SEM/EDS) and the atomic force microscope (AFM). The correct dispersion of the fillers in the polymer matrix was confirmed by wide-angle X-ray scattering analysis (WAXS). In turn, the physicochemical properties were presented on the basis of the research results: thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR). On the basis of the obtained results, it was found that both the amount and the type of fillers used significantly affected the functional properties of the tested composites.
Subject
Polymers and Plastics,General Chemistry