Latent Recycling Potential of Multilayer Films in Austrian Waste Management

Author:

Koinig GeraldORCID,Rutrecht BettinaORCID,Friedrich KarlORCID,Barretta ChiaraORCID,Vollprecht DanielORCID

Abstract

This work presents a hand sorting trial of Austrian plastic packaging, which showed that according to an extrapolation of the 170,000 t separately collected waste collected in Austria, 30 wt% are flexible 2D plastic packaging. Further, the applications for these materials have been catalogued. The composition of these films was evaluated via Fourier-Transformed Infrared Spectroscopy, which showed that 31% of all films were made of polyethene, 39% of polypropylene, 11% of polyethene–polyethene terephthalate composite, and 8% of a polyethene–polypropylene composite, further resulting in the calculation that of all flexible packaging, 20 wt% are multilayer films. These findings were used to calculate the latent potential for raising the current recycling quota of 25.7% to the mandated rate of 55% in 2030. To this end, scenarios depicting different approaches to sorting and recycling small films were evaluated. It was calculated that through improving the sorting of films the recycling rate could be increased to 35.5%. This approach allows for the recycling of monolayer films by avoiding contamination with foreign materials introduced by multilayer films that impede the recyclates’ mechanical properties. The evaluation showed that sorting multilayer films of this fraction could raise the recycling quota further to 38.9%.

Funder

Zukunftsfonds Steiermark

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference18 articles.

1. Plastics—The Facts 2016,2016

2. Produktion, Verarbeitung und Verwertung von Kunststoffen in Deutschland 2015 (Production, Processing and Recycling of Plastics in Germany),2016

3. Recycling of Polymer-Based Multilayer Packaging: A Review

4. Analysis of structure and properties of multilayer polymer foil

5. Polymer film packaging for food: An environmental assessment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3