The Effect of Agglomeration on the Electrical and Mechanical Properties of Polymer Matrix Nanocomposites Reinforced with Carbon Nanotubes

Author:

Tamayo-Vegas SebastianORCID,Muhsan AliORCID,Liu ChangORCID,Tarfaoui MostaphaORCID,Lafdi Khalid

Abstract

In this work, we investigated the effect of carbon nanotubes addition and agglomeration formation on the mechanical and electrical properties of CNT–polymer-based nanocomposites. Six specimens with carbon nanotubes (CNTs) fractions of 0%, 0.5%, 1%, 2%, 4% and 5% were manufactured and characterized by dynamic mechanical analysis (DMA) and four-probe method. The stress–strain curves and electrical conductivity properties were obtained. Scanning electron microscopy (SEM) was used to characterize both agglomeration and porosity formation. By employing micromechanics, through representative volume element (RVE), finite element analysis (FEA) and resistor network model (RNM), the Young’s modulus and electrical conductivity values were calculated. The samples’ elastic moduli showed an increment, reaching the maximum value at a CNTs fraction of 2%, thereafter an adverse effect was caused in the high CNT percentage samples. The final electrical conductivity seemed greatly altered with the addition of CNTs, reaching the percolation threshold at 2%. The unavoidable formation of CNT agglomerates appeared to influence the final physical properties. The CNT agglomerates adversely affect the mechanical performance of high-CNT-percentage samples. Conversely, an exponential increment in the electrical conductivity was presented as the agglomerates formed networks allowing the transport of electrons through the tunnelling effect. These phenomena were experimentally and numerically confirmed, showing a good correlation.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3