Abstract
The bio-oil phenol-formaldehyde (BPF) resin, prepared by using bio-oil as a substitute for phenol, has similar bonding strength but lower price to phenol-formaldehyde (PF) resin. As a common adhesive for outdoor wood, the aging performance of BPF resin is particularly important. The variations in mass, bonding strength, microstructure, atomic composition, and chemical structure of BPF resin under five aging conditions (heat treatment, water immersion, UV exposure, hydrothermal treatment, and weatherometer treatment) were characterized by scanning electron microscope, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, respectively. Compared under five aging conditions, after aging 960 h, the mass loss of plywood and film was largest under hydrothermal treatment; the bonding strength of plywood, the surface roughness, and O/C ratio of the resin film changed most obviously under weatherometer treatment. FT-IR analysis showed that the decreased degree of peak intensity on CH2 and C–O–C characteristic peaks of BPF resin were weaker under water immersion, hydrothermal treatment, and weatherometer treatment than those of PF resin. The comparison of data between BPF and PF resins after aging 960 h showed that adding bio-oil could obviously weaken the aging effect of water but slightly enhance that of heat. The results could provide a basis for the aging resistance modification of BPF resin.
Funder
the Humanities and Social Sciences Youth Fund of Ministry of Education
Subject
Polymers and Plastics,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献