Red Seaweed (Gracilaria verrucosa Greville) Based Polyurethane as Adsorptive Membrane for Ammonia Removal in Water

Author:

Nurman SalfauqiORCID,Saiful ,Rahmi ,Ginting Binawati,Marlina ORCID

Abstract

Polyurethane membranes are widely developed polymers by researchers because they can be made from synthetic materials or natural materials. Red seaweed (Gracilaria verrucosa Greville) is a natural material that can be developed as a raw material for polyurethane membranes. This study used red seaweed biomass (RSB) as a raw material to manufacture polyurethane as an adsorptive membrane for removing ammonia in water. The membrane composition was determined using the Box–Behnken design from Response Surface Methodology with three factors and three levels. In the ammonia adsorption process, the adsorption isotherm was determined by varying the concentration, while the adsorption kinetics was determined by varying the contact time. Red seaweed biomass-based polyurethane membrane (PUM-RSB) can adsorb ammonia in water with an adsorption capacity of 0.233 mg/g and an adsorption efficiency of 16.2%. The adsorption efficiency followed the quadratic model in the Box–Behnken design, which resulted in the optimal composition of RSB 0.15 g, TDI 3.0 g, and glycerin 0.4 g with predicted and actual adsorption capacities of 0.224 mg/g and 0.226 mg/g. The ammonia adsorption isotherm using PUM-RSB follows the Freundlich isotherm, with a high correlation coefficient (R2) of 0.977, while the Langmuir isotherm has a low R2 value of 0.926. The Freundlich isotherm indicates that ammonia is adsorbed on the surface of the adsorbent as multilayer adsorption. In addition, based on the analysis of adsorption kinetics, the adsorption phenomenon follows pseudo-order II with a chemisorption mechanism, and it is assumed that the bond that occurs is between the anion –SO42− with the NH4+ cation to form ammonium sulfate (NH4)2SO4 and between isocyanates (NCO) with NH4+ cations to form substituted urea.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3