Improvement of the Electrical-Mechanical Performance of Epoxy/Graphite Composites Based on the Effects of Particle Size and Curing Conditions

Author:

Suherman HendraORCID,Dweiri RadwanORCID,Sulong Abu Bakar,Zakaria Mohd Yusuf,Mahyoedin Yovial

Abstract

This study aims to improve the electrical-mechanical performance of traditional epoxy/graphite composites for engineering applications. The improvement in the properties of these composites depended on the incorporation of different sizes of graphite particles of the same type and controlling their curing process conditions. The thermal properties and microstructural changes were also characterized. A maximum in-plane electrical conductivity value of approximately 23 S/cm was reported for composites containing 80 wt.% G with a particle size of 150 µm. The effect of combining large and small G particles increased this value to approximately 32 S/cm by replacing the large particle size with 10 wt.% smaller particles (75 µm). A further increase in the electrical conductivity to approximately 50 S/cm was achieved due to the increase in curing temperature and time. Increasing the curing temperature or time also had a crucial role in improving the tensile strength of the composites and a tensile strength of ~19 MPa was reported using a system of multiple filler particle sizes processed at the highest curing temperature and time compared to ~9 MPa for epoxy/G150 at 80 wt.%. TGA analysis showed that the composites are thermally stable, and stability was improved by the addition of filler to the resin. A slight difference in the degraded weights and the glass transition temperatures between composites of different multiple filler particle sizes was also observed from the TGA and DSC results.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3