Calcined Co(II)-Chelated Polyazomethine as Cathode Catalyst of Anion Exchange Membrane Fuel Cells

Author:

Cheng Yu-WeiORCID,Hsieh Tar-Hwa,Huang Yu-Chang,Tseng Po-Hao,Wang Yen-Zen,Ho Ko-Shan,Huang Yue-Jie

Abstract

Polyazomethine (PAM) prepared from the polycondensation between p-phenylene diamine (PDA) and p-terephthalaldehyde (PTAl) via Schiff reaction can physically crosslink (complex) with Co ions. Co-complexed PAM (Co-PAM) in the form of gel is calcined to become a Co, N-co-doped carbonaceous matrix (Co-N-C), acting as cathode catalyst of an anion exchange membrane fuel cell (AEMFC). The obtained Co-N-C catalyst demonstrates a single-atom structure with active Co centers seen under the high-resolution transmission electron microscopy (HRTEM). The Co-N-C catalysts are also characterized by XRD, SEM, TEM, XPS, BET, and Raman spectroscopy. The Co-N-C catalysts demonstrate oxygen reduction reaction (ORR) activity in the KOH(aq) by expressing an onset potential of 1.19–1.37 V vs. RHE, a half wave potential of 0.70–0.92 V, a Tafel slope of 61–89 mV/dec., and number of exchange electrons of 2.48–3.79. Significant ORR peaks appear in the current–voltage (CV) polarization curves for the Co-N-C catalysts that experience two-stage calcination higher than 900 °C, followed by double acid leaching (CoNC-1000A-900A). The reduction current of CoNC-1000A-900A is comparable to that of commercial Pt-implanted carbon (Pt/C), and the max power density of the single cell using CoNC-1000A-900A as cathode catalyst reaches 275 mW cm−2.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3