The Fatigue Wear Process of Rubber-Metal Shock Absorbers

Author:

Kluczyk MarcinORCID,Grządziela Andrzej,Pająk MichałORCID,Muślewski ŁukaszORCID,Szeleziński Adam

Abstract

Rubber and rubber-metal vibration isolators are widely used vibration isolation systems in marine applications. For naval application, shock absorber mounting systems must fulfil two functions. The first one supports the suspended mass in the absence of waving or detonation while providing isolation from vibrations and shock impact. In the second case, during the machine operation, it reduces the force of movement to an acceptable value. Moreover, it returns the insulated mass to the position output without plastic deformation or residual buckling after removing shock stresses or harmonic vibrations. The environment in which marine vibration isolators are to be used strongly influences the selection of a shock absorber. The main environmental problem is the temperature range in marine power plants, which ranges from 20 °C to 55 °C. Temperature fluctuations may cause changes in the physical properties of typical vibration/shock insulators. Both rubbers and elastomers used for shock absorbers tend to stiffen, gain low-temperature damping, and soften and lose damping at elevated temperatures. Factors such as moisture, ozone and changes in atmospheric pressure are usually ignored in shipbuilding. The main environmental factors influencing the ageing of insulators are liquid saturated hydrocarbons, i.e., oils, fuels, coolants, etc., which may come into contact with the surface of the insulators. This work presents the results of the research carried out to determine the effect of overload and the impact of petroleum products on the materials of metal-rubber shock absorbers made of three different rubbers and one polyurethane mixture. For each of the materials, shock absorbers with three different degrees of hardness were tested.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference25 articles.

1. Influence of Fin’s Material Capabilities on the Propulsion System of Biomimetic Underwater Vehicle

2. Lifetime Prediction and Aging Behaviors of Nitrile Butadiene Rubber under Operating Environment of Transformer;Qian;J. Electr. Eng. Technol.,2018

3. Long-term ISO 23936-2 sweet oil ageing of HNBR

4. Handbook of Polymer Testing: Short-Term Mechanical Tests;Brown,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3