Polymeric Materials Based on Carbon Dioxide: A Brief Review of Studies Carried Out at the Faculty of Chemistry, Warsaw University of Technology

Author:

Florjańczyk Zbigniew,Rokicki Gabriel,Parzuchowski Paweł GrzegorzORCID,Mazurek-Budzyńska MagdalenaORCID,Dębowski MaciejORCID

Abstract

Carbon dioxide is an important raw material in many industrial technologies, but it is also one of the greenhouse gases that has to be effectively removed from the environment. This contribution provides a brief overview of carbon dioxide-based polymers developed in the laboratories of the Faculty of Chemistry at Warsaw University of Technology. We present some simple and versatile synthetic approaches that can be used to prepare a library of oligocarbonate diols, polycarbonates, poly(ester-carbonates), poly(ether-carbonates) and various types of polyurethanes, including the newly emerging family of environmentally friendly non-isocyanate polyurethanes. The main synthesis strategy involves the reaction of CO2 with oxiranes to form five-membered cyclic carbonates, which can be utilized as a source of carbonate bonds in polymeric materials obtained by the ester exchange reactions and/or step-growth polyaddition. We also show that cyclic carbonates are valuable starting materials in the synthesis of hyperbranched polymers and polymer networks. The properties of several CO2-based polymers are presented and their potential application as biomaterials, smart materials, and absorbers with a high CO2 capture capacity is discussed.

Funder

Faculty of Chemistry, Warsaw University of Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference88 articles.

1. Kazimierz Smoleński (1876–1943);Porejko;Przemysł Chemiczny,1958

2. From erythrene to Ker rubber. A chapter in the history of the Polish synthetic rubber;Ciechanowicz;Elastomery,1999

3. Copolymerization of carbon dioxide and epoxide

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3