Abstract
The additive manufacturing (AM) applications have attracted a great deal of interest with regard to experimental aerodynamic studies. There is a need for a universal roughness scale that characterizes different materials used in aerodynamic research. The main purpose of this paper is identification of the potential of a material jetting AM process to produce accurate aerodynamic surfaces. A new methodology to evaluate the roughness of aerodynamic profiles (airfoils) was proposed. A very short-span wing artifact for preliminary tests and a long-span wing model were proposed for design of experiments. Different artifacts orientations were analyzed, maintaining the same surface quality on the upper and lower surface of the wing. A translucent polymeric resin was used for samples manufacturing by polymer jetting (PolyJet) technology. The effects of main factors on the surface roughness of the wing were investigated using the statistical design of experiments. Three interest locations, meaning the leading-edge, central, and trailing-edge zones, on the upper and lower surfaces of the airfoil were considered. The best results were obtained for a sample oriented at XY on the build platform, in matte finish type, with a mean Ra roughness in the range of 2 to 3.5 μm. Microscopy studies were performed to analyze and characterize the surfaces of the wing samples on their different zones.
Subject
Polymers and Plastics,General Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献