New Methodology for Evaluating Surface Quality of Experimental Aerodynamic Models Manufactured by Polymer Jetting Additive Manufacturing

Author:

Udroiu RazvanORCID

Abstract

The additive manufacturing (AM) applications have attracted a great deal of interest with regard to experimental aerodynamic studies. There is a need for a universal roughness scale that characterizes different materials used in aerodynamic research. The main purpose of this paper is identification of the potential of a material jetting AM process to produce accurate aerodynamic surfaces. A new methodology to evaluate the roughness of aerodynamic profiles (airfoils) was proposed. A very short-span wing artifact for preliminary tests and a long-span wing model were proposed for design of experiments. Different artifacts orientations were analyzed, maintaining the same surface quality on the upper and lower surface of the wing. A translucent polymeric resin was used for samples manufacturing by polymer jetting (PolyJet) technology. The effects of main factors on the surface roughness of the wing were investigated using the statistical design of experiments. Three interest locations, meaning the leading-edge, central, and trailing-edge zones, on the upper and lower surfaces of the airfoil were considered. The best results were obtained for a sample oriented at XY on the build platform, in matte finish type, with a mean Ra roughness in the range of 2 to 3.5 μm. Microscopy studies were performed to analyze and characterize the surfaces of the wing samples on their different zones.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3