Enhanced Electromagnetic Interference Shielding Properties of Immiscible Polyblends with Selective Localization of Reduced Graphene Oxide Networks

Author:

Meng YimingORCID,Sharma Sushant,Chung Jin Suk,Gan Wenjun,Hur Seung Hyun,Choi Won MookORCID

Abstract

Herein, an effective technique of curing reaction-induced phase separation (CRIPS) was used to construct a reduced graphene oxide (RGO) network in the immiscible diglycidyl ether of the bisphenol A/polyetherimide (DGEBA/PEI) polyblend system. The unique chemical reduction of RGO facilitated the reduction of oxygenated groups and simultaneously appended amino groups that stimulate the curing process. The selective interfacial localization of RGO was predicted numerically by the harmonic and geometric mean technique and further confirmed by field emission transmission electron microscopy (FETEM) analysis. Due to interfacial localization, the electrical conductivity was increased to 366 S/m with 3 wt.% RGO reinforcement. The thermomechanical properties of nanocomposites were determined by dynamic mechanical analysis (DMA). The storage modulus of 3 wt.% RGO-reinforced polyblend exhibited an improvement of ~15%, and glass transition temperature (Tg) was 10.1 °C higher over neat DGEBA. Furthermore, the total shielding effectiveness (SET) was increased to 25.8 dB in the X-band region, with only 3 wt.% RGO, which represents ~99.9% shielding efficiency. These phase separation-controlled nanocomposites with selective localization of electrically conductive nanofiller at a low concentration will extend the applicability of polyblends to multifunctional structural nanocomposite applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3