Sorption of Fluoride and Bacterial Disinfection Property of Biosynthesized Nanofibrous Cellulose Decorated Ag–MgO–Nanohydroxyapatite Composite for Household Water Treatment

Author:

Ayinde Wasiu B.ORCID,Gitari Mugera W.ORCID,Smith James A.ORCID,Samie Amidou

Abstract

An innovative and sustainable approach to integrating modified Ag–MgO–nanohydroxyapatite on a nanofibrous cellulose template (CNF-AgMgOnHaP) as a multifunctional adsorbent via a hydrothermal bioreduction route using Citrus paradisi peel extract was developed and examined. The surface morphology and mineralogical properties of CNF-AgMgOnHaP by UV–vis spectroscopy, SEM-EDS, XRD, FTIR, TEM, and BET techniques are reported. Batch fluoride sorption studies and its disinfection potential against common bacteria in surface water were evaluated. The results showed the successful synthesis of a modified multistructural CNF-AgMgOnHaP composite with an improved BET surface area of 160.17 m2/g. The sorption of fluoride by the adsorbent was found to strongly depend on the different sorption conditions with a maximum F− sorption capacity of 8.71 mg/g at 303 K, and pH of 5 with 0.25 g dosage at 10 min contact time (25 ± 3 °C). Equilibrium fluoride sorption onto the CNF-AgMgOnHaP was best described by the Freundlich isotherm model across all the operating temperatures. The overall kinetic results showed that the adsorption mechanisms not only depend on using the pseudo-second-order process but are also governed by the mass transfer of the adsorbate molecules from the external surface onto the pores of the adsorbent. The thermodynamic parameters revealed that the adsorption process of F− onto CNF-AgMgOnHaP was endothermic and spontaneous at the sorbent/solution interface. The synthesized composite also provides some antibacterial activity against common infectious microbes from contaminated drinking water. The overall results suggested that the CNF-AgMgOnHaP nanocomposite possesses the potential for the simultaneous decontamination of pollutants and microbes in drinking water.

Funder

National Research Foundation of South Africa

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3