Influence Mechanism of Ultrasonic Vibration Substrate on Strengthening the Mechanical Properties of Fused Deposition Modeling

Author:

Wu Wenzheng,Li Jialin,Jiang Jili,Liu Qingping,Zheng Aodu,Zhang Zheng,Zhao Ji,Ren Luquan,Li GuiweiORCID

Abstract

Fused deposition modeling is the most widely used 3D-printing technology, with the advantage of being an accessible forming process. However, the poor mechanical properties of the formed parts limit its application in engineering. Herein, a new ultrasonic-assisted fused deposition modeling 3D-printing method was proposed to improve the mechanical properties of the formed parts. The effects of ultrasonic vibration substrate process parameters and printing process parameters on the tensile and bending properties of formed samples were studied. The tensile strength and bending strength of the samples printed with a 12 μm ultrasonic amplitude can be increased by 13.2% and 12.6%, respectively, compared with those printed without ultrasonic vibration. The influence mechanism of ultrasonic vibration on mechanical properties was studied through microscopic characterization and in situ infrared monitoring experiments. During the printing process, increasing the ultrasonic vibration and temperature employed via the ultrasonic substrate can reduce the pore defects inside the sample. The mechanical properties of FDM-formed samples can be controlled by adjusting ultrasonic-assisted process parameters, which can broaden the application of 3D printing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3