Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker

Author:

El-Said Waleed A.ORCID,Choi Jin-HaORCID,Hajjar Dina,Makki Arwa A.,Choi Jeong-Woo

Abstract

Recently, more and more attention has been paid to the development of eco-friendly solid sorbents that are cost-effective, noncorrosive, have a high gas capacity, and have low renewable energy for CO2 capture. Here, we claimed the fabrication of a three-dimensional (3D) film of hollow nanocones with a large surface area (949.5 m2/g), a large contact angle of 136.3°, and high surface energy. The synthetic technique is based on an electrochemical polymerization process followed by a novel and simple strategy for pulling off the formed layers as a membrane. Although the polymer-coated substrates were reported previously, the membrane formation has not been reported elsewhere. The detachable capability of the manufactured layer as a membrane braked the previous boundaries and allows the membrane’s uses in a wide range of applications. This 3D hollow nanocones membrane offer advantages over conventional ones in that they combine a π-electron-rich (aromatic ring), hydrophobicity, a large surface area, multiple amino groups, and a large pore volume. These substantial features are vital for CO2 capturing and storage. Furthermore, the hydrophobicity characteristic and application of the formed polymer as a CO2 sucker were investigated. These results demonstrated the potential of the synthesized 3D hollow polymer to be used for CO2 capturing with a gas capacity of about 68 mg/g and regeneration ability without the need for heat up.

Funder

National Research Foundation of Korea

Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3