Abstract
The investigation of plastic pallet molding, assisted by a sequential valve gate system, has not yet been performed due to the limitations of the pallet scale. Furthermore, at present, the application of recycled plastics by chemical industries has become extremely popular around the world. This study aimed to determine pallet flatness experimentally and numerically using recycled polypropylene with a large-scale pallet. Short-shot testing on injection molding was performed to obtain short-shot samples for confirmation of the flow front during simulated filling. The real injected pallet profile, which was measured by an ATOS, was compared after confirmation to the numerical profile of the pallet. The pallet’s flatness was accurately compared to the real experimental and numerical results. By adjusting the temperature of the cooling channel within the cavity plate to 55 °C, the flatness of the pallet achieved by the newly proposed sequential valve gate-opening scheme was about 7 mm, which meets the height directional warpage standard determined by the pre-set sequential scheme. The numerical flatness is in line with existing flatness values for pallets. Furthermore, the proposed cooling temperature gives the highest yield in terms of pallet molding from the perspective of the stakeholders.
Subject
Polymers and Plastics,General Chemistry
Reference33 articles.
1. Vocabularyhttps://www.iso.org/standard/61915.html
2. Wooden and Plastic Pallets: A Review of Life Cycle Assessment (LCA) Studies
3. Edge Environment Pty Ltd Pallet Life Cycle Assessment and Benchmarkhttps://re-pal.com/wp-content/uploads/2019/03/Edge-Environment-Pallet-Life-Cycle-Assessment-and-Benchmark-Report.pdf
4. Plastics–the Facts 2020: An Analysis of European Plastics Production, Demand and Waste Datahttps://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020
5. Characterization of Composition and Structure–Property Relationships of Commercial Post-Consumer Polyethylene and Polypropylene Recyclates
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献