Carbon-Nano Fibers Yield Improvement with Iodinated Electrospun PVA/Silver Nanoparticle as Precursor via One-Step Synthesis at Low Temperature

Author:

Gea SaharmanORCID,Attaurrazaq BoyORCID,Situmorang Suhut Alexander,Piliang Averroes Fazlur Rahman,Hendrana Sunit,Goutianos StergiosORCID

Abstract

High temperature is required in carbon fiber synthesis in the carbonization step. However, direct high-temperature heating without the presence of additive materials would affect the yield and structure of carbon fibers produced. Thus, this study aims to synthesize carbon fibers from poly-vinyl alcohol (PVA), as the precursor and reducing agent, using silver nanoparticles (SNP) from silver nitrate (AgNO3) as additives. The pre-treatment of PVA was performed in three steps, i.e., mixing PVA/AgNO3, electrospinning, and iodination. The interaction of PVA and AgNO3 was assessed by FTIR, and SEM was used to characterize the electro-spun fibers prior and after iodination; Raman spectrophotometer was carried out to confirm the yield of carbon fibers. There was reduction in oxygen groups (3000–3800 cm−1) and emergence of –C=O (1100 cm−1) and –C=C– (1627 cm−1) functional groups, indicating formation of carbon layers. Based on the DT/GA results, the silver nanoparticles reduce the need of high temperature with optimum carbonization at 350 °C and lead to the formation of more regular graphene layers. Graphene layers with a size distribution of 0.438 nm and well-organized structures were successfully formed, and the Raman shifting showed higher intensities of G and G’ bands in the presence of Ag. Based on DT/GA results, the yield of carbon fibers with iodinated PVA fibers and SNP as additive had higher rates around 800 µg/min, reaching 33% at 500 °C. Thus, it is demonstrated that iodinated PVA/AgNO3 samples can significantly improve carbon fiber yield at low temperatures.

Funder

Ministry of Culture, Education, Research, and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3