Surface Response Analysis for the Optimization of Mechanical and Thermal Properties of Polypropylene Composite Drawn Fibers with Talc and Carbon Nanotubes

Author:

Leontiadis Konstantinos,Tsioptsias Costas,Messaritakis StavrosORCID,Terzaki Aikaterini,Xidas Panagiotis,Mystikos Kyriakos,Tzimpilis Evangelos,Tsivintzelis IoannisORCID

Abstract

A large portion of the produced Polypropylene (PP) is used in the form of fibers. In this industrially oriented study, the development of composite PP drawn fibers was investigated. Two types of fillers were used (ultra-fine talc and single-wall carbon nanotubes). Optimization of the thermal and mechanical properties of the produced composite drawn fibers was performed, based on the Box-Behnken design of experiments method (surface response analysis). The effect of additives, other than the filler, but typical in industrial applications, such as an antioxidant and a common compatibilizer, was investigated. The drawing ratio, the filler, and the compatibilizer or the antioxidant content were selected as design variables, whereas the tensile strength and the onset decomposition temperature were set as response variables. Fibers with very high tensile strength (up to 806 MPa) were obtained. The results revealed that the maximization of both the tensile strength and the thermal stability was not feasible for composites with talc due to multiple interactions among the used additives (antioxidant, compatibilizer, and filler). Additionally, it was found that the addition of talc in the studied particle size improved the mechanical strength of fibers only if low drawing ratios were used. On the other hand, the optimization targeting maximization of both tensile strength and thermal stability was feasible in the case of SWCNT composite fibers. It was found that the addition of carbon nanotubes improved the tensile strength; however, such improvement was rather small compared with the tremendous increase of tensile strength due to drawing.

Funder

General Secretariat for Research and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3