On-Line Optical Monitoring of the Mixing Performance in Co-Rotating Twin-Screw Extruders

Author:

Bernardo FelipeORCID,Covas José A.ORCID,Canevarolo Sebastião V.

Abstract

The use of real-time techniques to evaluate the global mixing performance of co-rotating twin-screw extruders is well consolidated, but much less is reported on the specific contribution of individual screw zones. This work uses on-line flow turbidity and birefringence to ascertain the mixing performance of kneading blocks with different geometries. For this purpose, one of the barrel segments of the extruder was modified in order to incorporate four sampling devices and slit dies containing optical windows were attached to them. The experiments consisted in reaching steady extrusion and then adding a small amount of tracer. Upon opening each sampling device, material was laterally detoured from the local screw channel, and its turbidity and birefringence were measured by the optical detector. Residence time distribution curves (RTD) were obtained at various axial positions along three different kneading blocks and under a range of screw speeds. It is hypothesized that K, a parameter related to the area under each RTD curve, is a good indicator of dispersive mixing, whereas variance can be used to assess distributive mixing. The experimental data confirmed that these mixing indices are sensitive to changes in processing conditions, and that they translate the expected behavior of each kneading block geometry.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3