Author:
Yilmaz-Bayraktar Suheda,Foremny Katharina,Kreienmeyer Michaela,Warnecke Athanasia,Doll Theodor
Abstract
The gold standard for the partial restoration of sensorineural hearing loss is cochlear implant surgery, which restores patients’ speech comprehension. The remaining limitations, e.g., music perception, are partly due to a gap between cochlear implant electrodes and the auditory nerve cells in the modiolus of the inner ear. Reducing this gap will most likely lead to improved cochlear implant performance. To achieve this, a bending or curling mechanism in the electrode array is discussed. We propose a silicone rubber–hydrogel actuator where the hydrogel forms a percolating network in the dorsal silicone rubber compartment of the electrode array to exert bending forces at low volume swelling ratios. A material study of suitable polymers (medical-grade PDMS and hydrogels), including parametrized bending curvature measurements, is presented. The curvature radii measured meet the anatomical needs for positioning electrodes very closely to the modiolus. Besides stage-one biocompatibility according to ISO 10993-5, we also developed and validated a simplified mathematical model for designing hydrogel-actuated CI with modiolar hugging functionality.
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献