Influence of Various Technologies on the Quality of Ultra-Wideband Antenna on a Polymeric Substrate

Author:

Lukacs PeterORCID,Pietrikova AlenaORCID,Vehec IgorORCID,Provazek PeterORCID

Abstract

The design, simulation, realization, and measurement of an ultra-wideband (UWB) antenna on a polymeric substrate have been realized. The UWB antenna was prepared using conventional technology, such as copper etching; inkjet printing, which is regarded as a modern and progressive nano-technology; and polymer thick-film technology in the context of screen-printing technology. The thick-film technology-based UWB antenna has a bandwidth of 3.8 GHz, with a central frequency of 9 GHz, and a frequency range of 6.6 to 10.4 GHz. In addition to a comparison of the technologies described, the results show that the mesh of the screens has a significant impact on the quality of the UWB antenna when utilizing polymeric screen-printing pastes. Last but not least, the eco-friendly combination of polyimide substrate and graphene-based screen-printing paste is thoroughly detailed. From 5 to 9.42 GHz, the graphene-based UWB antenna achieved a bandwidth of 4.42 GHz. The designed and realized UWB antenna well exceeds the Federal Communications Commission’s (FCC) standards for UWB antenna definition. The modification of the energy surface of the polyimide substrate by plasma treatment is also explained in this paper, in addition to the many types of screen-printing pastes and technologies. According to the findings, plasma treatment improved the bandwidth of UWB antennas to 5.45 GHz, and the combination of plasma treatment with graphene provides a suitable replacement for traditional etching technologies. The characteristics of graphene-based pastes can also be altered by plasma treatment in terms of their usability on flexible substrates.

Funder

KEGA

Faculty of Electrical Engineering and Informatics, Technical University of Kosice

Európsky fond regionálneho rozvoja

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of wearable textile-based moisture sensor for smart diaper applications and examination of its comfort properties;The Journal of The Textile Institute;2024-08-28

2. A novel kind of antenna array with low dielectric constant;Fourth International Conference on Mechanical, Electronics, and Electrical and Automation Control (METMS 2024);2024-06-05

3. Stability of OhmegaPly Resistors with Different Shapes;2024 47th International Spring Seminar on Electronics Technology (ISSE);2024-05-15

4. Advancements in Biodegradable Printed Circuit Boards: Review of Material Properties, Fabrication Methods, Applications and Challenges;International Journal of Precision Engineering and Manufacturing;2024-05-14

5. Design Optimization for Enhancing Microstrip Antenna Performances Using Polylactic Acid (PLA) Biopolymer Substrate in Sub-6 GHz Band;International Journal of Precision Engineering and Manufacturing;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3