Thermal and Adhesion Properties of Fluorosilicone Adhesives Following Incorporation of Magnesium Oxide and Boron Nitride of Different Sizes and Shapes

Author:

Sung Kyung-SooORCID,Kim So-Yeon,Oh Min-Keun,Kim Namil

Abstract

Thermally conductive adhesives were prepared by incorporating magnesium oxide (MgO) and boron nitride (BN) into fluorosilicone resins. The effects of filler type, size, and shape on thermal conductivity and adhesion properties were analyzed. Higher thermal conductivity was achieved when larger fillers were used, but smaller ones were advantageous in terms of adhesion strength. Bimodal adhesives containing spherical MgOs with an average particle size of 120 μm and 90 μm exhibited the highest conductivity value of up to 1.82 W/mK. Filler shape was also important to improve the thermal conductivity as the filler type increased. Trimodal adhesives revealed high adhesion strength compared to unimodal and bimodal adhesives, which remained high after aging at 85 °C and 85% relative humidity for 168 h. It was found that the thermal and adhesion properties of fluorosilicone composites were strongly affected by the packing efficiency and interfacial resistance of the particles.

Funder

the Development of Nano Convergence Innovative Products Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3