Flame-Retardant Performance Evaluation of Functional Coatings Filled with Mg(OH)2 and Al(OH)3

Author:

Piperopoulos ElpidaORCID,Scionti Giuseppe,Atria Mario,Calabrese LuigiORCID,Proverbio EdoardoORCID

Abstract

In the shipbuilding sector (cruises, ferries, etc.), the design and control constraints applied to improve the fire safety conditions of naval vessels are acquiring important relevance. Research activities have aimed at enhancing the fire resistance of structures and surface coatings to make ships’ working environments safer, trying to combine performance, durability and low costs. In this context, the aim of this paper is to develop and optimize flame-retardant coatings for naval applications. In particular, in an acrylic carrier, Mg(OH)2 and Al(OH)3 fillers were added to exalt the fire resistance capabilities of the coatings. Furthermore, the effect of the particle size of the hydroxides on the coatings’ fire resistance was investigated. The coatings were studied by structural (XRD), thermo-physical (TG) and morphological (SEM) characterization to evaluate their thermal stability and the damage level due to fire exposition. Specifically, fire reaction tests were applied at different fire exposure times (15 s, 30 s) to estimate the fire resistance of the proposed coatings compared to the commercial reference. The results show that the coatings based on aluminum and magnesium hydroxides exhibit favorable fire resistance. Particularly, effective performances were observed for short times of exposure to direct flames. Furthermore, the temperature monitoring of the steel alloy support during the test allowed us to evaluate the degree of insulation of the coating, highlighting a better result for the specimen filled with Mg(OH)2, making this product promising for its optimization in this context.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3