UV-LED Curable Acrylic Films Containing Phosphate Glass Powder: Effect of the Filler Loading on the Thermal, Optical, Mechanical and Flame Retardant Properties

Author:

Pugliese DiegoORCID,Malucelli GiulioORCID

Abstract

In this work, we thoroughly investigate the effects of the incorporation of a phosphate glass micrometric powder on the morphology, as well as on the thermal, optical, mechanical and flame retardant properties of UV-LED curable acrylic films. To this aim, the filler loading was changed within 10 and 50 wt.%. UV-LED initiated curing was selected as a fast and reliable system, as the standard UV-curing process was not suitable because of the presence of the glass powder that decreased the quantum efficiency during the UV exposure, hence preventing the transformation of the liquid system into a solid network. The glass powder slightly increased the glass transition temperature of the acrylic network, hence showing a limited effect on the chain segments mobility; besides, increasing filler loadings were responsible for a progressive decrease of the transparency of films, irrespective of a marginal effect on their refractive index. Conversely, the presence of increasing amounts of phosphate glass improved the thermal and thermo-oxidative stability of the cured products. Besides, phosphate glass was capable of remarkably enhancing the flame retardance of the acrylic network at 50 wt.% loading, which achieved self-extinction in vertical flame spread tests (and was V-0 rated). This formulation, as assessed by forced-combustion tests, also displayed a remarkable decrease of peak of Heat Release Rate and Total Heat Release (by 44 and 33%, respectively) and of Total Smoke Release and Specific Extinction Area (by 53 and 56%, respectively). Further, the filler promoted an increase of the stiffness and surface hardness of the films, at the expense of a decrease in ductility. All these findings may justify the potential use of these composite films as flame retardant coatings for different flammable substrates.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3