Effect of Printing Process Parameters on the Shape Transformation Capability of 3D Printed Structures

Author:

Pivar Matej,Gregor-Svetec DianaORCID,Muck DejaORCID

Abstract

The aim of our research was to investigate and optimise the main 3D printing process parameters that directly or indirectly affect the shape transformation capability and to determine the optimal transformation conditions to achieve predicted extent, and accurate and reproducible transformations of 3D printed, shape-changing two-material structures based on PLA and TPU. The shape-changing structures were printed using the FDM technology. The influence of each printing parameter that affects the final printability of shape-changing structures is presented and studied. After optimising the 3D printing process parameters, the extent, accuracy and reproducibility of the shape transformation performance for four-layer structures were analysed. The shape transformation was performed in hot water at different activation temperatures. Through a careful selection of 3D printing process parameters and transformation conditions, the predicted extent, accuracy and good reproducibility of shape transformation for 3D printed structures were achieved. The accurate deposition of filaments in the layers was achieved by adjusting the printing speed, flow rate and cooling conditions of extruded filaments. The shape transformation capability of 3D printed structures with a defined shape and defined active segment dimensions was influenced by the relaxation of compressive and tensile residual stresses in deposited filaments in the printed layers of the active material and different activation temperatures of the transformation.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3